12 research outputs found

    Formation and computational implications of assemblies in neural circuits

    Get PDF
    In the brain, patterns of neural activity represent sensory information and store it in non-random synaptic connectivity. A prominent theoretical hypothesis states that assemblies, groups of neurons that are strongly connected to each other, are the key computational units underlying perception and memory formation. Compatible with these hypothesised assemblies, experiments have revealed groups of neurons that display synchronous activity, either spontaneously or upon stimulus presentation, and exhibit behavioural relevance. While it remains unclear how assemblies form in the brain, theoretical work has vastly contributed to the understanding of various interacting mechanisms in this process. Here, we review the recent theoretical literature on assembly formation by categorising the involved mechanisms into four components: synaptic plasticity, symmetry breaking, competition and stability. We highlight different approaches and assumptions behind assembly formation and discuss recent ideas of assemblies as the key computational unit in the brain

    Regulation of circuit organization and function through inhibitory synaptic plasticity

    Get PDF
    Diverse inhibitory neurons in the mammalian brain shape circuit connectivity and dynamics through mechanisms of synaptic plasticity. Inhibitory plasticity can establish excitation/inhibition (E/I) balance, control neuronal firing, and affect local calcium concentration, hence regulating neuronal activity at the network, single neuron, and dendritic level. Computational models can synthesize multiple experimental results and provide insight into how inhibitory plasticity controls circuit dynamics and sculpts connectivity by identifying phenomenological learning rules amenable to mathematical analysis. We highlight recent studies on the role of inhibitory plasticity in modulating excitatory plasticity, forming structured networks underlying memory formation and recall, and implementing adaptive phenomena and novelty detection. We conclude with experimental and modeling progress on the role of interneuron-specific plasticity in circuit computation and context-dependent learning

    The generation of cortical novelty responses through inhibitory plasticity

    Get PDF
    Animals depend on fast and reliable detection of novel stimuli in their environment. Neurons in multiple sensory areas respond more strongly to novel in comparison to familiar stimuli. Yet, it remains unclear which circuit, cellular, and synaptic mechanisms underlie those responses. Here, we show that spike-timing-dependent plasticity of inhibitory-to-excitatory synapses generates novelty responses in a recurrent spiking network model. Inhibitory plasticity increases the inhibition onto excitatory neurons tuned to familiar stimuli, while inhibition for novel stimuli remains low, leading to a network novelty response. The generation of novelty responses does not depend on the periodicity but rather on the distribution of presented stimuli. By including tuning of inhibitory neurons, the network further captures stimulus-specific adaptation. Finally, we suggest that disinhibition can control the amplification of novelty responses. Therefore, inhibitory plasticity provides a flexible, biologically plausible mechanism to detect the novelty of bottom-up stimuli, enabling us to make experimentally testable predictions

    Eleven strategies for making reproducible research and open science training the norm at research institutions

    Get PDF
    Reproducible research and open science practices have the potential to accelerate scientific progress by allowing others to reuse research outputs, and by promoting rigorous research that is more likely to yield trustworthy results. However, these practices are uncommon in many fields, so there is a clear need for training that helps and encourages researchers to integrate reproducible research and open science practices into their daily work. Here, we outline eleven strategies for making training in these practices the norm at research institutions. The strategies, which emerged from a virtual brainstorming event organized in collaboration with the German Reproducibility Network, are concentrated in three areas: (i) adapting research assessment criteria and program requirements; (ii) training; (iii) building communities. We provide a brief overview of each strategy, offer tips for implementation, and provide links to resources. We also highlight the importance of allocating resources and monitoring impact. Our goal is to encourage researchers - in their roles as scientists, supervisors, mentors, instructors, and members of curriculum, hiring or evaluation committees - to think creatively about the many ways they can promote reproducible research and open science practices in their institutions

    Heterosynaptic Plasticity Determines the Set Point for Cortical Excitatory-Inhibitory Balance

    No full text
    Excitation in neural circuits must be carefully controlled by inhibition to regulate information processing and network excitability. During development, cortical inhibitory and excitatory inputs are initially mismatched but become co-tuned or balanced with experience. However, little is known about how excitatory-inhibitory balance is defined at most synapses or about the mechanisms for establishing or maintaining this balance at specific set points. Here we show how coordinated long-term plasticity calibrates populations of excitatory-inhibitory inputs onto mouse auditory cortical pyramidal neurons. Pairing pre- and postsynaptic activity induced plasticity at paired inputs and different forms of heterosynaptic plasticity at the strongest unpaired synapses, which required minutes of activity and dendritic Ca(2+) signaling to be computed. Theoretical analyses demonstrated how the relative rate of heterosynaptic plasticity could normalize and stabilize synaptic strengths to achieve any possible excitatory-inhibitory correlation. Thus, excitatory-inhibitory balance is dynamic and cell specific, determined by distinct plasticity rules across multiple excitatory and inhibitory synapses
    corecore